Brevet de technicien supérieur session 2012 Polynésie Comptabilité et gestion des organisations

Exercice 1 10 points

A. Ajustement affine

Pour les besoins d'une usine qui fabrique des puces, l'entreprise TERRARE extrait du minerai rare. Sa production annuelle X (en tonnes) n'excède pas 2 tonnes et le coût total annuel de la production est noté Y en milliers d'euros (on notera $1 \text{ k} \in = 10^3 \in$). Les résultats des premières années d'exploitation sont consignés dans le tableau suivant.

année	2006	2007	2008	2009	2010
x_i (en tonnes)	0,52	0,77	1,01	1,36	1,81
y _i (en k€)	186,7	230,9	283,1	381,3	558,9

1. Le plan est muni d'un repère orthogonal.

Unités graphiques: 1 cm pour 0,1 unité sur l'axe des abscisses et 2 cm pour 100 unités sur l'axe des ordonnées.

Construire le nuage de points associé à cette série statistique sur une feuille de papier millimétré. 2. La nature de l'activité et le graphique laissent penser qu'un ajustement exponentiel est approprié.

On pose $z = \ln y$.

a. Compléter le tableau donnée en annexe à rendre avec la copie.

Arrondir à 10^{-3} les valeurs de z_{i} .

- **b.** Déterminer le coefficient de corrélation linéaire entre x et z. Arrondir à 10^{-3} .
- c. À l'aide de la calculatrice, déterminer par la méthode des moindres carrés, une équation de la droite d'ajustement de z en x. Les coefficients seront arrondis à 10^{-2} .
- **a.** Déduire du 2. c. une expression de y en fonction de x, de la forme $y = Be^{ax}$. Arrondir B à l'entier le plus proche.
 - **b.** En déduire une estimation du coût de production pour 2 tonnes.

B. Étude d'une fonction

On considère la fonction f définie sur $[0; +\infty[$ par

$$f(x) = 0.4e^{0.3x}$$

On désigne par C sa courbe représentative dans un repère orthogonal et par f' sa fonction dérivée. Unités graphiques : 1 cm pour 1 unité sur l'axe des abscisses et 1 cm pour 2 unités sur l'axe des ordonnées.

- 1. Étudier la limite de f en $+\infty$.
- 2. **a.** Calculer f'(x).

Étudier le signe de f'(x) et donner le tableau de variation de f sur $[0; +\infty[$.

Tracer C sur une deuxième feuille de papier millimétré.

C. Calcul intégral et applications

On admet que le poids moyen de matière extraite, entre l'année 2006 de rang 1 et l'année 2010 de rang 5, est donné par

$$P_m = \frac{1}{4} \int_1^5 f(x) \, \mathrm{d}x.$$

- 1. Démontrer que $P_m = \frac{1}{3} (e^{1.5} e^{0.3})$.
- **2.** Donner la valeur approchée de P_m arrondie à 10^{-3} .

10 points **Exercice 2**

A. Probabilités conditionnelles

Un fabricant d'ampoules fluocompactes dispose de trois chaînes de montage A, B, C:

- la chaîne de montage A fournit 20 % de la production totale de l'usine,
- la chaîne de montage B fournit 20 % de la production totale de l'usine,
- la chaîne de montage C fournit 60 % de la production totale de l'usine.

Les ampoules qui sortent des trois chaînes sont testées :

- le pourcentage d'ampoules défectueuses issues de la chaîne de montage A est 1,2 %,
- le pourcentage d'ampoules défectueuses issues de la chaîne de montage B est 3,3 %,
- le pourcentage d'ampoules défectueuses issues de la chaîne de montage C est 1,5 %.

On note:

- A l'événement « l'ampoule est issue de la chaîne de montage A »
- B l'événement « l'ampoule est issue de la chaîne de montage B »
- Cl'événement «l'ampoule est issue de la chaîne de montage C»
- D l'événement « l'ampoule est défectueuse »
- 1. Montrer que le pourcentage d'ampoules défectueuses sur la production totale de l'usine s'élève à 1,8 %.
- **2.** Calculer la probabilité qu'une ampoule provienne de la chaîne B sachant qu'elle est défectueuse. Arrondir le résultat à 10^{-2} .

B. Loi binomiale

Dans cette partie les résultats seront arrondis à 10^{-2}

On prélève au hasard 50 ampoules dans la production totale d'une journée de l'usine.

On assimile ce tirage à un tirage avec remise.

On considère la variable aléatoire *X* qui, à tout prélèvement de 50 ampoules, associe le nombre d'ampoules qui sont défectueuses. On rappelle que la probabilité pour qu'une ampoule prise au hasard soit défectueuse est de 0,018.

- 1. Expliquer pourquoi la variable aléatoire *X* suit une loi binomiale, dont on déterminera les paramètres.
- **2.** Calculer P(X = 2).
- 3. Calculer la probabilité qu'au moins une pièce soit défectueuse.

C. Loi normale

Dans cette partie les résultats seront arrondis à 10^{-4}

On considère la variable aléatoire Y qui, à toute ampoule prélevée au hasard dans la production journalière de l'usine, associe sa durée de vie en heures.

- 1. On admet que Y suit une loi normale de moyenne 8 300 et d'écart type 250.
 - Calculer la probabilité $P(Y \leq 8615)$.
- 2. Ces ampoules sont vendues dans le commerce, mais les informations concernant leur durée de vie ont dû être légèrement modifiées pour tenir compte du nombre moyen d'allumages et d'extinctions.
 - On admet que Y suit une loi normale de moyenne m et d'écart type σ .

On trouve, avec les précisions fournies par la table ou la calculatrice, que $P(Y \le 7436) = 0,2912$ et $P(Y \le 8204) = 0,8531$.

- **a.** Vérifier que m et σ vérifient l'équation $1,05\sigma + m = 8204$.
- **b.** En admettant que m et σ vérifient également l'équation $-0.55\sigma + m = 7436$, déterminer m et σ .

Annexe (à rendre avec la copie)

Exercice 1

A. 2. a. tableau 1

année	2006	2007	2008	2009	2010
x_i	0,52	0,77	1,01	1,36	1,81
y_i	186,7	230,9	283,1	381,3	558,9
z_i					